### **NEVBD** Pesticide Resistance Monitoring Program

*Establishing a Centralized Network to Increase Regional Capacity for Pesticide Resistance Detection and Monitoring* 

#### Joseph Poggi & Dr. James Burtis Cornell Department of Entomology NEVBD





# Northeast Regional Center for Excellence in Vector Borne Diseases (NEVBD)

#### Lead Organizations

- Cornell University, College of Agricultural & Life Sciences
- New York State Department of Health
- Columbia University
- Connecticut Agricultural Experiment Station
- Rutgers University
- Fordham University: Louis Calder Center



# Northeast Regional Center for Excellence in Vector Borne Diseases (NEVBD)

- Lead Organizations
  - Cornell University, College of Agricultural & Life Sciences
  - New York State Department of Health
  - Columbia University
  - Connecticut Agricultural Experiment Station
  - Rutgers University
  - Fordham University: Louis Calder Center
- Funded by CDC in December <u>2016</u> to address tick- and mosquito-borne disease threats
  - Community of practice
  - Applied Research
  - \_ Training





### Pesticide Resistance Monitoring Goals



# Is resistance monitoring conducted in the Northeast?

**1.** Address factors limiting regional pesticide resistance monitoring

2. Assist directly in the monitoring of pesticide resistance through specimen submission system

**3.** Provide educational to the public health community

**4.** Provide support for efficacy and resistance field trials



### Pesticide Use and Resistance Survey

**Overview of Survey Respondents** 



Thank you to everyone who responded!

### Pesticide Use and Resistance Survey

#### **Species Targeted for Management**

| Ae. albopictus       |   |   |    |            |                  |              |    |    |    |    |
|----------------------|---|---|----|------------|------------------|--------------|----|----|----|----|
| Ae. japonicus        |   |   |    |            |                  |              |    |    |    |    |
| Ae. sollicitans      |   |   |    |            |                  |              |    |    |    |    |
| Ae. triseriatus      |   |   |    |            |                  |              |    |    |    |    |
| Ae. vexans           |   |   |    |            |                  |              |    |    |    |    |
| An. quadrimaculatus  |   |   |    |            |                  |              |    |    |    |    |
| Cx. pipiens/restuans |   |   |    |            |                  |              |    |    |    |    |
| Cx. salinarius       |   |   |    |            |                  |              |    |    |    |    |
| Cs. melanura         |   |   |    |            |                  |              |    |    |    |    |
| Other                | • |   |    |            |                  |              |    |    |    |    |
|                      | 0 | 5 | 10 | 15<br>Numb | 20<br>Der of Res | 25<br>ponses | 30 | 35 | 40 | 45 |

- The primary management targets in the northeastern region are Aedes albopictus and Culex pipiens/restuans
- Resistance detection in other species is often limited by how difficult they can be to maintain in colony

### Pesticide Use and Resistance Survey

#### **Control Methods Employed in the Northeast**



### **Preparation: Larval Bioassays**

Established diagnostics for *Ae. albopictus* and *Cx. pipiens* using susceptible colonies



### **Preparation: CDC Bottle Bioassay**

- Established diagnostics for *Ae. albopictus* and *Cx. pipiens* using susceptible colonies
- Order Bottle Bioassay kits from CDC



### **Preparation: NEVBD Kits**

- Established diagnostics for *Ae. albopictus* and *Cx. pipiens* using susceptible colonies
- Coordinated with CDC on using and teaching CDC bottle bioassay

Made larvicide resistance kits

Larvicide Resistance Kit



https://neregionalvectorcenter.com/resistance

### **Preparation: NEVBD Kits**

- Established diagnostics for *Ae. albopictus* and *Cx. pipiens* using susceptible colonies
- Coordinated with CDC on using and teaching CDC bottle bioassay
- Made larvicide resistance kits
- Made collection kits & Initiated a specimen submission system

#### *Culex pipiens* Collection Kit



Larvicide Resistance Kit



#### *Aedes albopictus* Collection Kit



https://neregionalvectorcenter.com/resistance

### **Preparation: NEVBD Kits**

- Established diagnostics for *Ae. albopictus* and *Cx. pipiens* using susceptible colonies
- Coordinated with CDC on using and teaching CDC bottle bioassay
- Made larvicide resistance kits
- Made collection kits & Initiated a specimen submission system
  - Distributed materials & educational tools to collaborators



### Methods: Defining Resistance



### Methods: Defining Resistance



### Methods: Defining Resistance



### Methods: Rearing Conditions

Larvae were reared at a consistent density, temperature and food supply



### Methods: Bioassay Conditions

- Larvae were reared at a consistent density, temperature and food supply
  - Bioassays were conducted in incubators at 28° C and 80% humidity and a 12:12 (L:D) light cycle



### Methods: Bioassay Conditions

- Larvae were reared at a consistent density, temperature and food supply
- Bioassays were conducted in incubators at 28° C and 80% humidity and a 12:12 (L:D) light cycle
- Adults used in CDC bottle bioassays were 2 – 6 day old sugarfed F0 females



### Methods: Bioassay Conditions

- Larvae were reared at a consistent density, temperature and food supply
- Bioassays were conducted in incubators at 28° C and 80% humidity and a 12:12 (L:D) light cycle
- Adults used in CDC bottle
  bioassays were 2 6 day old
  unfed F0 females
- All materials were either sterilized or discarded between trials
- Pesticides were technical grade and stored at < 4° C



### 2019 Results: Larvicide Resistance

#### **Culex pipiens**

13,200 larvae tested throughout the region

### 2019 Results: Larvicide Resistance

#### **Culex pipiens**

- 13,200 larvae tested throughout the region
- Widespread low-level methoprene resistance was detected with moderate resistance in some locations
- No Bti or *Bacillus sphaericus* resistance was detected



Proportion of *Culex pipiens* larvae dead at LC-99 x1 for methoprene. The size of the circles represent the number of specimens tested, which ranges from 240 –to– 1936

## 2019 Results: Larvicide Resistance

#### Culex pipiens

- 13,200 larvae tested throughout the region
- Widespread low-level methoprene resistance was detected with moderate resistance in some locations
- No Bti or Bacillus sphaericus resistance was detected

#### Aedes albopictus

- 1,416 larvae tested throughout the region
- No resistance to Bti or methoprene was detected



Proportion of *Culex pipiens* larvae dead at LC-99 x1 for methoprene. The size of the circles represent the number of specimens tested, which ranges from 240 –to– 1936

### 2019 Results: Adulticide Resistance

#### Culex pipiens

- 3,113 adult females tested throughout the region
- Received many pyrethroid requests but few organophosphate requests
- Levels of resistance varied



### 2019 Results: Adulticide Resistance

#### Culex pipiens

- 3,113 adults tested throughout the region
- Received many pyrethroid requests but few organophosphate requests
- Levels of resistance varied



### 2019 Results: Adulticide Resistance

#### Culex pipiens

- 3,113 adults tested throughout the region
- Received many pyrethroid requests but few organophosphate requests
- Levels of resistance varied

#### Aedes albopictus

- 910 adults tested throughout the region
- Pyrethroid resistance detected, mostly from New Jersey



Percentage of *Cx. pipiens* adults dead throughout a CDC bottle bioassay trial testing for sumithrin resistance. A comparison between three locations.

### **Additional Activities**

#### **New Jersey Spray Efficacy Trials**

- Assisted with field trials to compare the efficacy of Buffalo Turbine and A1 Super Duty Blower for larvicidal application
- Field work and spray conducted in NJ by Scott Crans, Nick Indelicato, and Matthew Bickerton
- Laboratory work conducted in Ithaca NY

#### **Spray Areas in Bergen**



Four areas in total were treated, two each in Bergen and Mercer Counties

## **Additional Activities**

#### **New Jersey Spray Efficacy Trials**

- Assisted with field trials to compare the efficacy of Buffalo Turbine and A1 Super Duty Blower for larvicidal application
- Field work and spray conducted in NJ by Scott Crans, Nick Indelicato, and Matthew Bickerton
- Laboratory work conducted in Ithaca NY

#### **4-Posters and Tick Resistance**

- Compare permethrin susceptibility of Shelter Island ticks with other populations and laboratory colonies
- Collected ticks from Shelter Island in collaboration with Beau Payne and Dr. Scott Campbell



### Next Field Season

## **1.** Continue to expand our collaborative network

2. Send out a follow-up survey to feedback

**3.** Update larvicide curves using the CDC's *Ae. albopictus* and *Cx. pipiens susceptible* colonies

**4.** Create a *Bacillus sphaericus* curve and diagnostics

5. New efficacy kits and rearing guides!

#### NEVBD Pesticide Resistance Monitoring Program



https://neregionalvectorcenter.com/resistance

## Acknowledgements

#### **Key Collaborators**

Laura Harrington James Burtis Joseph R. McMillan Theodore Andreadis Philip Armstrong Scott Campbell Patti Casey Scott Crans Amy Isenberg Janice Pulver Kerry White Craig Zondag Beau Payne

#### **Contributors**

Nick Indelicato Matthew Bickerton Rory Badger Steven Su Gregory Williams Stacey Giordano Jack Petersen Margaret Kawalkowski Russell Berger John Betz

#### **Harrington Lab**





Please visit the NEVBD for more information

neregionalvectorcenter.com/resistance

If you have additional questions about the resistance program, please contact me directly at jp2463@cornell.edu or Dr. James Burtis at jbb766@cornell.edu



### Questions?

Please visit the NEVBD for more info: neregionalvectorcenter.com/resistance

If you have additional questions about the resistance program, please contact me directly at <u>jp2463@cornell.edu</u> or Dr. James Burtis at <u>jbb766@cornell.edu</u>