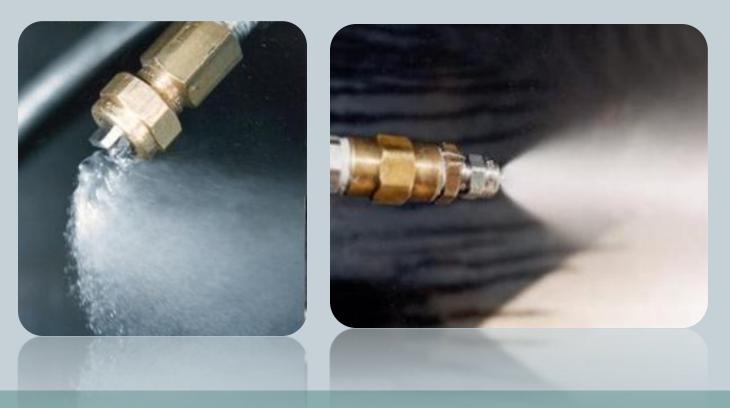
Mid-Atlantic Mosquito Control Association Conference 2010 Savannah, Georgia

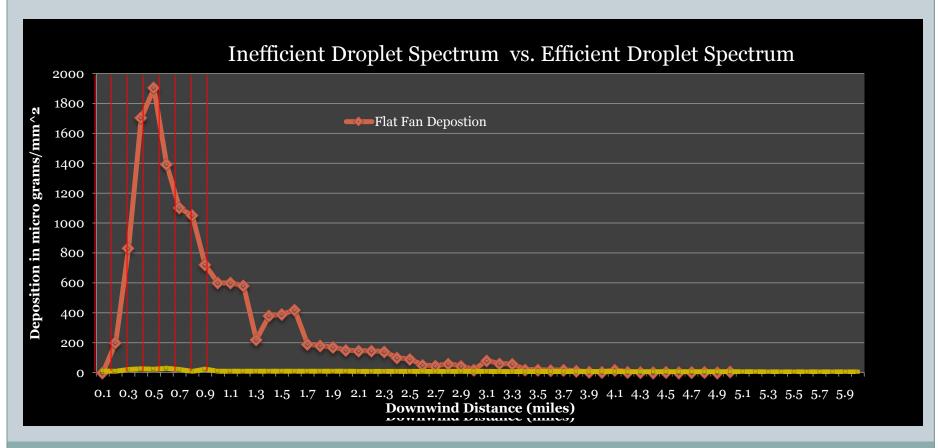

IMPORTANCE OF DROPLET SPECTRUM

BILL REYNOLDS

Why do we calibrate and measure droplets?

- Historically, certain compounds during aerial applications caused paint spotting on automobiles
- Early research also discovered certain droplet sizes are more efficacious
- Heavy deposition resulted in non-target mortality
- Smaller droplets are virtually ineffective or wasted

• Jim Robinson of Pasco County discovered through highspeed photography in a wind tunnel, the presence of extremely large droplets produced by flat-fan nozzles.



- Study in 1970 by G. Mount concluded:
 - O In a 1970 paper, Mount et al looked at the "Relationship of Minimum Lethal Dose To The Optimum Size of Droplets of Insecticides for Mosquito Control".
 - They found the "lethal dose" size to be 25 microns for malathion, 17.5 and 20 microns for Naled and Fenthion.
 - They concluded that, for the above mentioned insecticides, they should be atomized to droplets of 25 microns or less for maximum efficiency.

- A lethal dose of an active ingredient is contained in an 18 micron diameter droplet.
- A 54 micron drop would contain 27x the lethal dose (wasting 26x the dose even if it does contact a mosquito!)
- Droplet Density Number of droplets per unit volume changes as the "inverse cube" of the change in droplet size. (Halve the diameter, increase the number by 8x)

- How many droplets would be produced from a BB?
 - × 20 micron droplet would produce 9,761,000
 - × 17 micron droplet would produce 15,079,991
 - × 10 micron droplet would produce 74,088,000

 Dr. Jim Dukes, PHEREC Lab Panama City Beach, FL. performed nontarget effect and drift study in cooperation with Collier Mosquito Control

Malvern laser wind-tunnel

- Measuring meteorology at aircraft release height
- Advent of advanced GPS system which provided real-time optimization offsets
- Introduction, training and use of AGDISP

What benefits did these advances yield if adopted?

- Approximately 75% more of an adulticide ounce, gallon, etc... is within a droplet size to result in a LD90
- Greatly reduced the concentration of deposition
- Efficient droplet spectrum provided users the economic opulence of reducing application rates while increasing mortality
- Demonstrated to regulators that as an industry we guided standards vs. being told what to do (especially during the FQPA re-registration)

Enough History, What are the driving forces now?

- The $\mathbf{Dv_{0.1}}$ Dv_{0.5} and Dv_{0.9} are Standard Terminologies (used by the ASABE ASTM and world wide) now adopted by the EPA
- These are simple standard methods for describing a spray distribution
- VMD alone describes only a median, no information on the rest of the spray
- The most popular method of describing the spread or distribution of a droplet spectrum spray cloud is called the Relative Span (RS)

$$RS = (Dv_{0.9} - Dv_{0.1})$$
$$Dv_{0.5}$$

Importance of Droplet Spectrum

- As per the ASABE and ASTM the standard terminologies for droplet distributions are;
 - The Dv_{0.5} is the diameter of the drop where 50% of the volume is in drops of a smaller diameter
 - ➤ The Dv_{0.1} and Dv_{0.9} are the diameters where 10% and 90% respectively are in drops of a smaller diameter
- Vector/Mosquito Control have a category now called Extra Fine (XF)

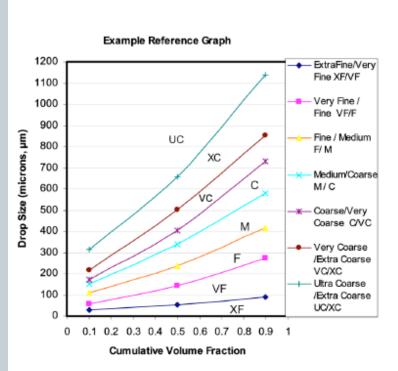
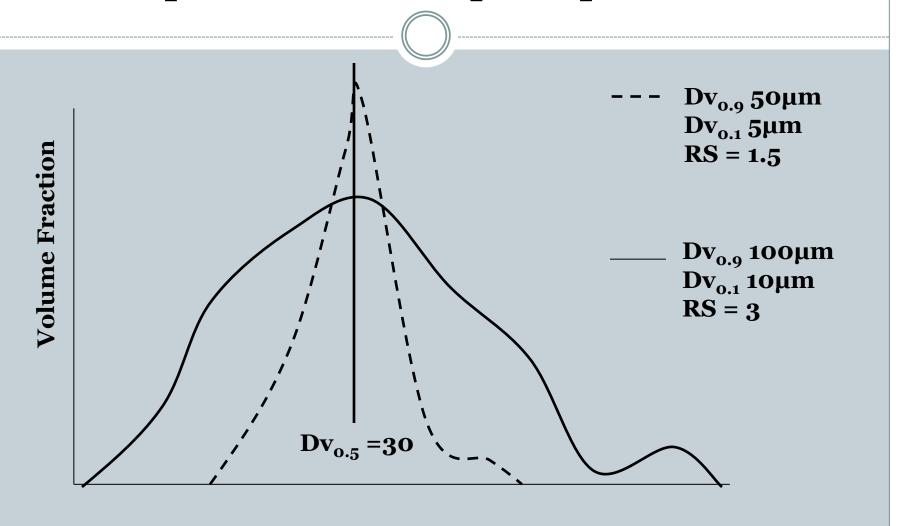



Figure 1 – Sample reference graph developed from measurements averaged from three types of laser instruments. NOTE: To view figure in color please go to http://www.asabe.org/standards/images/s572images.html

Importance of Droplet Spectrum

Droplet size

Droplet Collection Methods

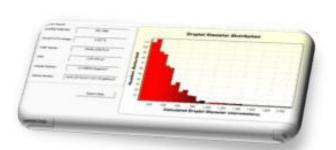
Spinning Impingers

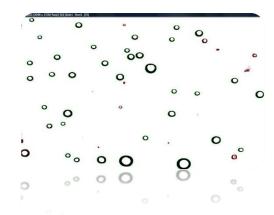
- o 1" slides
 - ▼ Good for ground and aerial adulticide characterization
 - Not efficient at collecting far field or downrange smaller droplets
 - **x** Biased collection method
 - Slightly more expensive
- o 3mm slides
 - Good for ground and aerial adulticide characterization
 - Efficient at collecting far field or downrange smaller droplets
 - Biased collection method
 - **Economical**
 - ⊥ Last a long time
- Magnesium oxide slides
- Cascade Impacter
- Silicon

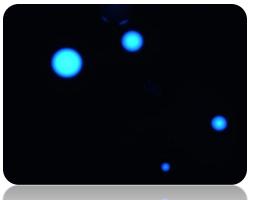
Droplet Collection Methods

Methods for Measuring Droplet Spectrum

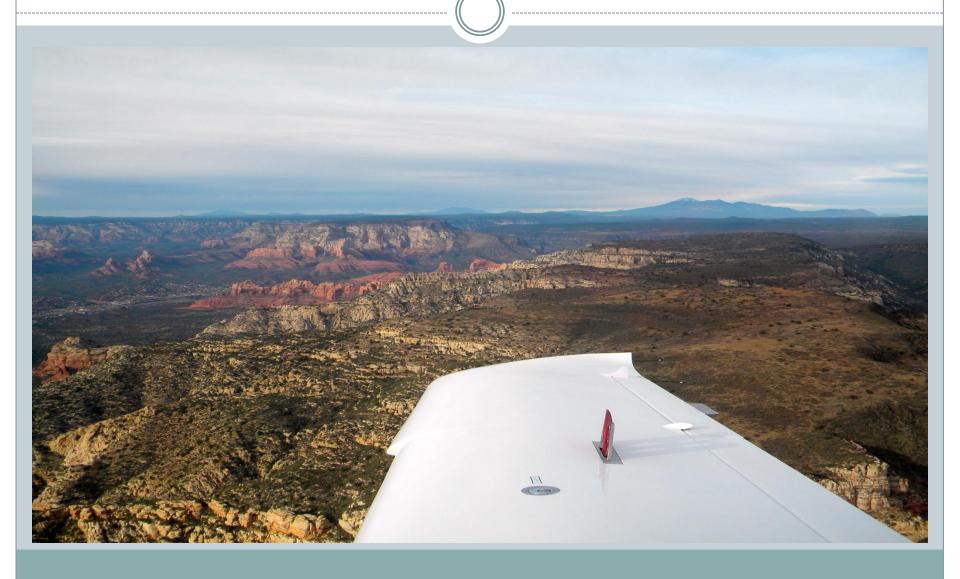
• Read teflon, magnesium oxide slides by human eye with microscope


Methods for Measuring Droplet Spectrum


DC-III hotwire


Methods for Measuring Droplet Spectrum

- DropVision™
- DropVision™ Fluorescence
- DropVision AG™ Larvacide



Questions?

